Yeni müfredata göre 10.sınıf matematik 1.tema “geometrik şekiller” konusunun 4.dersi : Sinüs ve Kosinüs Teoremi
Sinüs teoremi, üçgenlerde açı ve kenarlar arasındaki ilişkiyi veren temel teoremlerden biridir. Özellikle dik üçgen dışında kalan genel üçgenlerde (ABC üçgeni gibi) çözüm yapmamızı sağlar. Bir üçgende kenarlar ve açıların karşılıklı ilişkisini şöyle ifade eder:
a, b, c: üçgenin kenar uzunlukları (her kenar karşısındaki açı harfiyle anılır: a kenarı A açısının karşısındadır).
A, B, C: üçgenin iç açılarıdır.
R: üçgenin çevrel çemberinin yarıçapıdır.
Matematikte üçgenleri çözmek için kullandığımız en güçlü araçlardan biri Kosinüs Teoremidir. Özellikle dik üçgenlerde sinüs, kosinüs ve tanjant oranlarını rahatlıkla kullanırız; ancak üçgen dik değilse işler biraz daha karmaşık hale gelir. İşte bu noktada kosinüs teoremi devreye girer.
Bir ABC üçgeninde kenarlar a, b, c ve karşılarındaki açıları sırasıyla A, B, C olarak düşünelim. Kosinüs teoremi şu formülle ifade edilir:
Kısacası kosinüs teoremi, yalnızca sınav sorularında değil; hayatın her alanında bize yardımcı olan bir matematik aracıdır.
Kosinüs teoremi, üçgen çözümünde en kritik araçlardan biridir. Pythagoras’ın özel bir hali gibi düşünülebilir ama çok daha kapsamlıdır. Hem açı bulmada hem de kenar hesaplamada kullanılabildiği için lise matematiğinde ve üniversiteye giriş sınavlarında mutlaka öğrenilmesi gereken konular arasındadır.
10.Sınıf Matematik 1.Dönem 1. Yazılı Örnekleri için TIKLAYIN (Tüm senaryolardan yazılı örneği var..)
Ah Şu Matematik-Ali Hoca (Yeni Müfredata Uyumlu Dersleri Kaçırma)
Parabol Çizimini Kâbus Olmaktan Çıkaran 5 Basit Sır O Karmaşık Denklemler ve Bitmeyen Tablolar... Matematik…
Türkiye’de sınav sistemi yeni bir döneme giriyor. Milli Eğitim Bakanlığı tarafından uygulamaya alınan Türkiye Yüzyılı…
LGS çalışma süreci çoğu öğrenci ve veli için 8. sınıfla özdeşleştirilir. Ancak başarılı öğrencilerin ortak…